Invariant Sübspaces of Certain Linear Operators
نویسندگان
چکیده
This theorem is stronger than a result which Iohvidov [3] derived from the fundamental theorem of [6]. Iohvidov's theorem is so related to Pontrjagin's fundamental theorem that either one can be obtained from the other by a transform analogous to the Cayley transform (see [4]). Pontrjagin's proof of his theorem uses delicate and rather complicated arguments. Kreïn's proof of the theorem stated above is much simpler and consists of an ingenious application of the fixed point principle. In the present note we shall prove two results similar to the Pontrjagin-Iohvidov-Kreïn theorem but of much more general nature, on existence of invariant subspaces of certain linear operators. I t will be seen that the Pontrjagin-Iohvidov-Kreïn theorem can be derived from our Theorem 2. All topological vector spaces considered here are implicitly assumed to be real or complex topological vector spaces satisfying the Hausdorff separation axiom.
منابع مشابه
Stability of essential spectra of bounded linear operators
In this paper, we show the stability of Gustafson, Weidmann, Kato, Wolf, Schechter and Browder essential spectrum of bounded linear operators on Banach spaces which remain invariant under additive perturbations belonging to a broad classes of operators $U$ such $gamma(U^m)
متن کاملOn the two-wavelet localization operators on homogeneous spaces with relatively invariant measures
In the present paper, we introduce the two-wavelet localization operator for the square integrable representation of a homogeneous space with respect to a relatively invariant measure. We show that it is a bounded linear operator. We investigate some properties of the two-wavelet localization operator and show that it is a compact operator and is contained in a...
متن کاملShift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کاملA note on $lambda$-Aluthge transforms of operators
Let $A=U|A|$ be the polar decomposition of an operator $A$ on a Hilbert space $mathscr{H}$ and $lambdain(0,1)$. The $lambda$-Aluthge transform of $A$ is defined by $tilde{A}_lambda:=|A|^lambda U|A|^{1-lambda}$. In this paper we show that emph{i}) when $mathscr{N}(|A|)=0$, $A$ is self-adjoint if and only if so is $tilde{A}_lambda$ for some $lambdaneq{1over2}$. Also $A$ is self adjoint if and onl...
متن کاملCertain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators
The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...
متن کامل